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Abstract: The objective quantification of photoreceptor loss in inherited retinal degenerations 
(IRD) is essential for measuring disease progression, and is now especially important with the 
growing number of clinical trials. Optical coherence tomography (OCT) is a non-invasive 
imaging technology widely used to recognize and quantify such anomalies. Here, we 
implement a versatile method based on a convolutional neural network to segment the regions 
of preserved photoreceptors in two different IRDs (choroideremia and retinitis pigmentosa) 
from OCT images. An excellent segmentation accuracy (~90%) was achieved for both IRDs. 
Due to the flexibility of this technique, it has potential to be extended to additional IRDs in 
the future. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (170.4500) Optical coherence tomography; (170.4470) Ophthalmology; (100.6890) Three-dimensional 
image processing; (170.1610) Clinical applications. 
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1. Introduction 
Inherited retinal degenerations (IRDs) are caused by mutations in genes important for retinal 
function and cause progressive retinal degeneration. The most common IRD is retinitis 
pigmentosa (prevalence of 1 in 3,000-4,000 people) [1, 2], but other common IRDs include: 
choroideremia (estimated 1 in 50,000) [3], Usher syndrome (approximately 1 in 20,000) [4], 
Stargardt disease (1 in 8,000-10,000) [5], Leber amaurosis (2-3 in 100,000) [6] and others [7]. 
Since IRDs progressively lead to blindness, it is of great importance to monitor the integrity 
of photoreceptors in routine follow up visits and during gene therapy. 
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Currently, several imaging technologies encompassing fundus photography [8], fundus 
autofluorescence [9, 10] and optical coherence tomography (OCT) [2, 8, 11] are used for 
assessment of disease progression in the clinical practice. Since OCT is the only one to 
provide depth-resolved information of retinal tissue, it is the most solid existing technology 
for imaging and quantification of photoreceptor preservation. 

In OCT images, the second hyper-reflective layer of the outer retina, identified as the 
ellipsoid zone (EZ) of the photoreceptors [12], is the structure most suitable to assess 
photoreceptor damage [13]. Numerous image processing techniques have been reported in 
recent years to detect and quantify the extent of EZ damage in IRDs [14], macular 
telangiectasia [15] and ocular trauma [16]. Previously, we have developed en face methods 
that use OCT images to detect EZ loss in mild diabetic retinopathy by fuzzy logic [17] and 
choroideremia by a random forest classifier [18]. However, the pattern of photoreceptor 
integrity can present differently in each retinal pathology. For example, with retinitis 
pigmentosa the best strategy is to detect the preserved EZ boundary since the degeneration 
starts in the mid-periphery and constricts centrally to leave a round-shaped “island” of 
preserved EZ centered at the fovea [2]. For other diseases, such as Stargardt Dystrophy, 
where photoreceptor atrophy starts centrally, it is more feasible to detect EZ loss. The pattern 
of EZ atrophy can present with complex shapes such as with choroideremia, which shows 
initial loss in the periphery of the macula, scalloped edges [19] and outer retinal tubulations 
[20]. Consequently, image processing methods developed targeting a certain disease 
assuming certain ad hoc rules are not generalizable and typically do not perform as well for 
patients with a different IRD. 

With the purpose of developing a single method that is adaptable to different retinal 
conditions, we have implemented a deep learning platform that can be trained for more than 
one IRD (herein, retinitis pigmentosa and choroideremia) to detect the areas of preserved EZ. 
Our approach uses a segmentation method consisting of sliding-window binary classification 
of OCT B-scan sections by a convolutional neural network (CNN). In the context of deep 
learning, the segmentation problem is that of finding the pixels that belong to a certain 
semantic class that the network has been trained to recognize (e.g. defect tissue vs. healthy 
tissue). Here, we use a CNN trained from B-scan patches enclosing sections of the EZ, each 
of which is labeled based on the appearance of en face images at the patch’s central A-line 
position. Further bimodal thresholding of probability maps by an Otsu scheme and 
morphological operations provided binary maps of the segmented preserved photoreceptor 
areas with high accuracy compared to manual segmentation by an expert grader. 

2. Materials and methods 

2.1 Study population 

Twenty subjects diagnosed with chorideremia and twenty-two diagnosed with retinitis 
pigmentosa were recruited from the Ophthalmic Genetics clinic at the Casey Eye Institute at 
the Oregon Health & Science University (OHSU). The protocol was approved by the 
Institutional Review Board/Ethics Committee of OHSU and the research adhered to the 
tenants of the Declaration of Helsinki. 

2.2 Data acquisition 

Macular scans covering a 6 mm × 6 mm area were acquired by a 70-kHz, 840-nm-wavelength 
spectral-domain OCT system (Avanti RTVue-XR, Optovue Inc.) within 2.9 seconds. The 
AngioVue version 2016.2.0.35 software was used to acquire optical coherence tomography 
angiography (OCTA) scans. In the fast transverse scanning direction, 304 A-scans were 
sampled to form a B-scan and two repeated B-scans were acquired at each lateral location. A 
total of 304 locations were scanned in the slow transverse direction to form a 3D data cube. 
Axial resolution in AngioVue is 5 µm but digital pixel sampling is 3 µm. Structural OCT data 
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